Microscopic approach to the kinetics of pattern formation of charged molecules on surfaces.

نویسندگان

  • V N Kuzovkov
  • G Zvejnieks
  • E A Kotomin
  • M Olvera de la Cruz
چکیده

A microscopic formalism based on computing many-particle densities is applied to the analysis of the diffusion-controlled kinetics of pattern formation in oppositely charged molecules on surfaces or adsorbed at interfaces with competing long-range Coulomb and short-range Lennard-Jones interactions. Particular attention is paid to the proper molecular treatment of energetic interactions driving pattern formation in inhomogeneous systems. The reverse Monte Carlo method is used to visualize the spatial molecular distribution based on the calculated radial distribution functions (joint correlation functions). We show the formation of charge domains for certain combinations of temperature and dynamical interaction parameters. The charge segregation evolves into quasicrystalline clusters of charges, due to the competing long- and short-range interactions. The clusters initially co-exist with a gas phase of charges that eventually add to the clusters, generating "fingers" or line of charges of the same sign, very different than the nanopatterns expected by molecular dynamics in systems with competing interactions in two dimensions, such as strain or dipolar versus van der Waals interactions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cellular Automata Simulation of a Bistable Reaction-Diffusion System: Microscopic and Macroscopic Approaches

The Cellular Automata method has been used to simulate the pattern formation of the Schlögl model as a bistable Reaction-Diffusion System. Both microscopic and macroscopic Cellular Automata approaches have been considered and two different methods for obtaining the probabilities in the microscopic approach have been mentioned. The results show the tendency of the system towards the more sta...

متن کامل

Kinetics of Propane Hydrate Formation in Agitated Reactor: A Mass Transfer Approach

Understanding the kinetics of gas hydrate formation is essential to model and predict the hydrate formation (or dissociation) process. In the present paper, we investigated the formation of pure propane gas hydrate as a former gas. In this regard, several experiments were conducted to measure the rate of hydrate formation under various pressures (410 to 510 kPa) and temperatures (274 K to 277 K...

متن کامل

Thermodynamics and Kinetics of Spiro-Heterocycle Formation Mechanism: Computational Study

Reaction mechanism among indoline-2,3-dione, pyrrolidine-2-carboxylic acid and (Z)-2-(1-(2-hydroxynaphthalen-1-yl)ethylidene)hydroxycarboxamide to form 1’-((((aminooxy)carbonyl)amino)methyl)-2’-(1-hydroxynaphthalen-2-yl)-2’-methyl-1’,2’,5’,6’,7’,7a’-hexahydrospiro[indoline-3,3’-pyrrolo[1,2-a]imidazole-2-one was investigated using density functional theory (DFT) at B3LYP basis theory. The three-...

متن کامل

EFFECT OF ELECTRIC FIELD ON PD ACTIVITY AND DAMAGE INTO SOLID DIELECTRIC MATERIALS

Abstract – In this paper, the effect of applied electric field on the damage due to partial discharges activity into the surroundings dielectrics of a narrow channel encapsulated within the volume of a dielectric material is evaluated using a kinetic model based on Particle in Cell - Monte Carlo Collision (PIC-MCC) model. After application of an electric field across a dielectric material which...

متن کامل

Effects of Plasma Discharge Parameters on the Nano-Particles Formation in the PECVD Reactor

In this paper, the effects of plasma discharge parameters on the nano particles formation process in a plasma enhanced chemical vapor deposition (PECVD) reactor using a model based on equations of ionization kinetics for different active species are studied. A radio frequency applied electric field causes ionization inside the reactor and consequently different reaction schemically active speci...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 82 2 Pt 1  شماره 

صفحات  -

تاریخ انتشار 2010